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SUMMARY

Despite important differences between infectious diseases and cancers, tumour development (neoplasia) can nonetheless be
closely compared to infectious disease because of the similarity of their effects on the body. On this basis, we predict that
many of the life-history (LH) responses observed in the context of host–parasite interactions should also be relevant in
the context of cancer. Parasites are thought to affect LH traits of their hosts because of strong selective pressures like
direct and indirect mortality effects favouring, for example, early maturation and reproduction. Cancer can similarly also
affect LH traits by imposing direct costs and/or indirectly by triggering plastic adjustments and evolutionary responses.
Here, we discuss how and why a LH focus is a potentially productive but under-exploited research direction for cancer re-
search, by focusing our attention on similarities between infectious disease and cancer with respect to their effects on LH
traits and their evolution. We raise the possibility that LH adjustments can occur in response to cancer via maternal/paternal
effects and that these changes can be heritable to (adaptively) modify the LH traits of their offspring. We conclude that LH
adjustments can potentially influence the transgenerational persistence of inherited oncogenic mutations in populations.
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INTRODUCTION

Cancer, a leading cause of human death worldwide,
occurs across phylogenetical lineages, suggesting that
cancer may have been present throughout the evolu-
tionary history of multicellular organisms (Merlo
et al. 2006; Aktipis and Nesse, 2013; Nunney, 2013).
Despite the widespread existence of cancer in the
animal kingdom, oncology and other sciences have
until very recently developed in relative isolation.

This is unfortunate given that links between these dis-
ciplines have the reciprocal potential to reveal new
directions for research and perspectives as well as pro-
posing new therapeutic solutions. For example, it is
increasingly acknowledged that applying ecological
and evolutionary theory to cancer allows researchers
to improve techniques to control malignant progres-
sion and prevent therapeutic failures (Aktipis and
Nesse, 2013; Thomas et al. 2013; Rozhok and
DeGregori, 2015). In addition, considering the eco-
logical contexts in which cancers occur in wildlife
improves our understanding of the evolution of the
pathology itself, as well as to its theoretical potential
to shape organism traits (Kokko and Hochberg,
2015). Ecologists have also proposed that oncogenic
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phenomena have important influences on shaping
animal behaviour, life history and even ecosystem
functioning (Vittecoq et al. 2013, 2015).
Here, we propose a research direction deserving of

more attention concerning life-history (LH)
responses displayed by animals in the face of cancer
risks and/or malignant progression. The primary
reasons this topic has until now been poorly investi-
gated are because it is often assumed that: (i) cancer
in wildlife is rare; and (ii) adaptive responses against
cancer are unlikely to evolve because cancer is a
post-reproductive disease (see Vittecoq et al. 2013).
However, evidence increasingly indicates that cancer
is in fact likely to be common in wildlife, and has
been documented in a diverse array of taxa from
invertebrates to large mammals (Table 1).
Furthermore, cancer can increase the risk that
animals die early in life due to predation or parasitism
(Martineau et al. 2002; McAloose and Newton,
2009). For example, oncogenic phenomena in wildlife
(as in humans) encompass a large range ofmore or less
malignant tumours, ranging from benign neoplasms
to metastatic malignancies that induce various conse-
quences on health and vigour, such as early death and
decreased reproductive potential (Table 1; see also
Vittecoq et al. 2013). As a result of these negative
effects, animals can become more susceptible to inter-
specific interactions (especially predation and parasit-
ism) that result in death prior to the end of the
reproductive period. Together, these observations
suggest that natural selection should favour adapta-
tions that prevent cancer-induced reductions in
fitness, just as we would expect for any other infec-
tions (Thomas et al. 2009). Thus, we draw on the lit-
erature related to parasitism and its effects on LH
traits to guide us towards profitable avenues for
cancer research. Whereas proximate mechanisms
guarding against cancer, such as lower somatic muta-
tion rates and redundancy of tumour suppressor
genes, are currently being extensively studied in
some wildlife species (Caulin and Maley, 2011;
Roche et al. 2012), thus far much less attention has
been paid to other traits, such as LH adaptations.

Infection and cancer in multicellular organisms

Importantly, cancer cells not only act similarly to
parasites by diverting energy and resources from
other vital functions of the host, but also a substan-
tial proportion of malignancies are caused by infec-
tions (ca. 20% of human cancers; Ewald and Swain
Ewald, 2015). Thus, infections could contribute to
cancer directly or indirectly. Direct initiation
results from pathogens (particularly intracellular
parasites) altering cellular regulatory mechanisms
(e.g. apoptosis and cell-cycle arrest) and cell prolifer-
ation rates, and therefore breaking down cellular
barriers that would otherwise prevent oncogenesis.
Infection-induced inflammatory responses may also

result in increased mutation rates and compromised
proliferation signals, and concomitantly indirectly
initiate malignant transformations (reviewed in
Ewald and Swain Ewald, 2012, 2013). Although
protozoans (e.g. Plasmodium falciparum, Molyneux
et al. 2012), bacteria (e.g. Helicobacter pylori,
Mager 2006; Ewald and Swain Ewald, 2014) and tre-
matodes (e.g. Schistosoma haemotobium, Mostafa
et al. 1999; Ewald and Swain Ewald, 2014) have all
been shown to directly or indirectly cause malignan-
cies, viruses are the most frequent sources of infec-
tion-induced cancers (reviewed by Ewald and
Swain Ewald, 2015). While oncogenic pathogens
and their induced malignancies are well documented
in humans and domestic animals, they are less well
recorded in undomesticated captive animals, and
are largely undetected in nature. Ewald and Swain
Ewald (2015) have proposed several explanations for
why cancer is rarely found in natural populations:
(1) although benign neoplasms occur pervasively in
multicellular organisms they rarely transition to de-
tectable malignant tumours; (2) reduced survival
due to malignancy [as a direct (detrimental to
health) or indirect (increased predation) consequence
of cancer] hinders detectability; and (3) diagnostics
and evaluation of malignancy are inconsistent across
species. The full scope of infection-induced cancers
is still not known for any multicellular species, but
interestingly infection-induced cancers are known to
occur at young ages (e.g. cervical cancer in humans).
Cancer, being induced by pathogens or acting

analogously to parasites, or both, clearly has a
major impact on host’ LH traits. We next discuss
cancer as selective force on host LH traits.

Why should cancer influence LH traits?

Cancer, both solid tumours and blood cancers, can
be thought of as a developing species that behaves
in a manner akin to parasites (Duesberg et al.
2011). As far as host LH traits are concerned, para-
sites likely play an important role in their evolution
because they often impose important selective pres-
sures on the host (Michalakis and Hochberg,
1994). Similarly, cancer cells depend on their hosts
for sustenance, proliferating inside their bodies,
exploiting them for energy and resources, and
thereby impairing their health and fitness. Based
on these similarities, it is predicted that several of
the responses that have evolved in the context of
host–parasite interactions should also be relevant in
the context of cancer (Vittecoq et al. 2013).
Evolutionary theory on host–parasite interactions
postulates that host species should also be under se-
lective pressures to avoid the source of the pathology
in the first instance (e.g. Hart, 1994), then prevent its
progression once infected, and finally alleviate the
fitness costs if further development is not prevent-
able (Thomas et al. 2009).
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Table 1. Examples of cancers observed in different metazoan groups and their potential impacts on host LH traits (modified from Vittecoq et al. 2015).

Common name Latin name Context and prevalence Cancer type Factors favouring cancer
Potential impact on host LH
traits Reference

Invertebrate
Hydra Pelmatohydra

robusta
Laboratory population,
unknown

Undetermined Genetic predisposition Reduced population growth
rate, reduced capacity of egg
production. Tumour-bearing
polyps have significantly
reduced fitness

Domazet-Loso
et al. (2014)

Blue mussel Mytilus trossulus Cultured and wild
populations, up to 40%
in northeast Pacific

Haemic neoplasia Unknown Increased mortality.
Haemocytes showing signifi-
cantly less phagocytic capacity
leading to reduced immune
function and mortality

Ciocan et al.
(2006); Ciocan
and Sunila (2005);
Galimany and
Sunila (2008)

Soft-shell
clam

Mya arenaria East coast of North
America, up to 100% in
affected areas

Haemic neoplasia Retrotransposon
(Steamer)

Increased mortality.
Haemocytes showing signifi-
cantly less phagocytic capacity
leading to reduced immune
function and mortality

Metzger et al.
(2015)

Common
fruit fly

Drosophila
melanogaster

Laboratory population,
19% in 5-week old
males

Gut and testis tumours Unknown Altered egg production, females
with cancer reach peak ovipos-
ition earlier than healthy
females

Salomon and
Jackson (2008)

Fish
Yellow sea
horse &
weedy sea
dragon

Hippocampus
kuda &
Phyllopteryx
taeniolatus

Captive (zoo), 9 out of
172 syngnathids ana-
lysed, mostly adult
males

Cardiac rhabdomyosarcoma,
renal adenocarcinoma, renal
adenoma, lymphomas, exo-
crine pancreatic carcinoma,
intestinal carcinoma

Unknown Cancer potentially impacts
feeding and predator evasion,
as well as might reduce repro-
ductive output by primarily
affecting males (male sea horses
being the carers of eggs)

LePage et al. (2012)

Coral trout Plectropomus
leopardus

Free-living, 15% in part
of the Great Barrier
Reef

Melanomas Genetic predisposition –
potentially associated
with hybridization with
another Plectropomus
species

Fish with cancer are potentially
less active and feed less

Sweet et al. (2012)

Amphibians
African
clawed frog

Xenopus laevis Laboratory population,
5% in the studied
population

Various forms the most
common being hepatomas,
ovarian tumours and
teratomas

Various, e.g. virus, bac-
terium
(Myocobacterium
marinum)

In some cases diseased indivi-
duals stop feeding and die.
Ovarian tumours might impair
reproduction

Balls (1962); Goyos
and Robert
(2009); Hardwick
and Philpott
(2015)

Reptiles
Green
turtle

Chelonia mydas Free-living, up to 58% in
the Hawaiian
archipelago

Tumours of the skin, flippers,
periocular tissues, carapace
and plastron; nodules can also
be found in all internal organs

Herpes virus infection High mortality rates, impaired
movements. Rapidly growing
tumours disrupt the turtle’s
biologic functions (swimming,
diving), predator evasion and
feeding

Brill et al. (1995);
Chaloupka et al.
(2009); Page-
Karjian et al.
(2014) 3
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Table 1. (Cont.)

Common name Latin name Context and prevalence Cancer type Factors favouring cancer
Potential impact on host LH
traits Reference

Egyptian
mastigure

Uromastyx
aegyptius

Captive (zoo), 53% in the
studied population

Multicentric lymphomas Unknown High mortality rate.
Lymphomas impair feeding,
increase parasite burden and
cause organ failure

Gyimesi et al.
(2005)

Birds
Rock dove Columba livia Laboratory population,

34% in the studied
population

Various forms, the three most
frequent cancers are semino-
mas, thyroid adenomas and
lymphomas

Unknown Adenocarcinomas of the female
reproductive tracts and semi-
nomas of testicles might impair
reproduction

Shimonohara et al.
(2012)

Domestic
chicken

Gallus gallus Breeding stocks, tumour
commonly causes ⩾1%–
2% mortality of birds,
with occasional losses of
⩾20%

Lymphoid leucosis Avian leucosis virus Subclinical infection decreases
egg production and quality,
and hence reproduction

Dunn (2013)

Mammals
Tasmanian
devil

Sarcophilus
harrisii

Free-living, up to 80% in
2–3 year-old
individuals

Tasmanian DFTD Low genetic variation High mortality rates, tumours
on head impair vision and
feeding. DFTD spreads via
social interactions, primarily
during mating. High mortality
rates at reproductive age caused
shift in reproductive strategy to
semelparous from iteroparous

McCallum et al.
(2007)

Santa
Catalina
Island fox

Urocyon littoralis
catalinae

Population living on
Santa Catalina Island,
48·9% of dead foxes
examined from 2001 to
2008, 52·2% randomly
sampled live mature
animals

Ceruminous gland dysplasia
and hyperplasia

Indirectly caused by ear
mite (Otodectes cynotis)
infection

The gross proliferative lesions
and invasive carcinomas
infiltrating adjacent bones may
impair hearing and hence the
hunting ability of the animals

Vickers et al.
(2015); Moriarty
et al. (2015)

Beluga Delphinapterus
leucas

Free-living, 27% of the
adults found dead in
St. Lawrence estuary

Various forms, most frequent
cancers are adenocarcinoma
of the intestine and stomach.
Ovarian cancers in females

Probable role of the
polycyclic aromatic
hydrocarbons found in
beluga’s prey

High mortality rates. Intestinal
carcinomas alter nutrition ab-
sorption, ovarian tumours
might impair reproduction

Martineau et al.
(2002)

California
sea lion

Zalophus
californianus

Free-living, 18–25% of
animals examined post-
mortem

Genital tract carcinomas Genotype, persistent
organic pollutants and
herpesvirus

Since the urogenital carcinoma
affects sub-adult and adult
animals of both sexes (cervix
and vagina of females and the
penis, prepuce and urethra of
males) it could potentially alter
reproduction and LH strategies
of seals

Browning et al.
(2015)
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Costs on LH traits

Parasitic organisms exploit their host for resources
that could otherwise be used for maintenance,
growth and/or reproduction (Poulin, 2007; Schmid-
Hempel, 2011). Direct costs resulting from this
exploitation can cause inter-individual (or inter-
population) variation in LH traits such as fecundity
and survival (Thomas et al. 2000). At the same
time, inter-individual differences in physiology and
LH productivity may ‘drive’ or encourage consistent
variation in behaviour (Biro and Stamps, 2008; Biro
et al. 2014), and differences in behaviour can in turn
affect the likelihood of encounter rates with parasites
and transmission of them between one another (Boyer
et al. 2010; Dunn et al. 2011; Bull et al. 2012; Seaman
and Briffa, 2015). Thus, inter-individual (or inter-
population) variation in LH traits could at the same
time be both causes and consequences of parasitism.
Additionally, direct modifications of the host’s LH
traits may also result from toxic products of the
parasite’s metabolism (Michalakis, 2009). Finally,
the complex machinery constituting the immune
system often incurs metabolic costs that indirectly
generate modifications of the host’s LH traits as a
result of trade-offs (Sorci et al. 2009). The extent to
which these trade-offs are manifest are likely to
differ among individuals that differ in their energetic
and productive capacities (van Noordwijk and de
Jong, 1986; Reznick et al. 2000; Biro and Stamps,
2008).
In the context of malignancies, the time elapsing

from the appearance of the first cancerous cells to
the development of a metastatic cancer may vary
from weeks to years, or even decades, depending
on individuals and types of cancer. The shape of
the relationship between health/fitness-related
traits and tumour development is not precisely
known for most species and most cancers (see
Vittecoq et al. 2015). Nonetheless, individuals har-
bouring tumours are likely to be, sooner or later, in
a worse condition than healthy individuals on
average, even if individuals differ in their intrinsic
energetic and LH capacities. Frequent symptoms
of cancer are extreme tiredness (fatigue) or weight
loss, resulting from cancer cells using up much of
the body’s energy supply, or releasing substances
that modify the way the body derives energy from
food (Wagner and Cella, 2004; Ryan et al. 2007).
Although cancer-related fatigue is one of the most
prevalent symptoms in cancer sufferers, the precise
aetiology of this distressing and debilitating
symptom remains poorly understood. Given that
energy allocation relative to energy acquisition is at
the heart of predictions for how competing LH
traits might be affected by such energy ‘drains’
(van Noordwijk and de Jong, 1986), a research
focus on energetics might thus be very informative
for understanding LH responses to cancer.

Plastic adjustments of LH traits

Host LH traits can undergo flexible and adaptive
responses to parasitism in order to compensate
for the negative costs exerted by parasites on host
fitness (Hochberg et al. 1992; Michalakis and
Hochberg, 1994). For instance, hosts unable to
resist infection by other means (e.g. immunologic-
al resistance, inducible defences or long-distance
migration) are theoretically favoured by selection
if they partly compensate the parasite-induced
losses by reproducing earlier (Forbes, 1993) or if
their behaviour impedes the transmission of the
parasite in spatially structured contexts (Débarre
et al. 2012). Infected individuals may, for instance, in-
crease their reproductive activities before dying or
being castrated by parasites (Minchella and Loverde,
1981; Sorci et al. 1996; Polak and Starmer, 1998;
Adamo, 1999), or simply increase their fitness
through kin selection-mediated effects (Débarre
et al. 2012; Iritani and Iwasa, 2014). Among recent
examples, Vézilier et al. 2015 demonstrated that
female mosquitoes parasitized by P. falciparum
begin laying their eggs two days earlier, thereby com-
pensating the loss of fecundity due to their reduced
lifespan. In the context of cancer, preliminary results
(Arnal et al. unpublished data) suggest that females
in Drosophila harbouring early stages of tumours
tend to reach the peak of oviposition earlier than
healthy females before concomitantly dying sooner.
As compelling as these recent studies are, clearly add-
itional studies of this kind are necessary before gener-
alizations can be made.

Parental ‘programming’ and inheritance of LH traits

The influence of parental (non-genetic) effects on
their offspring’s phenotype is increasingly acknowl-
edged as an important adaptive mechanism in
animals (Mousseau et al. 2009; Wolf and Wade,
2009). There is a growing body of evidence indicat-
ing that parasitic exploitation of a host can lead to
changes in the phenotype of the hosts’ offspring,
though the latter are not parasitized (reviewed by
Poulin and Thomas, 2008). For instance, animals
infected with harmful parasites often produce
smaller offspring because parents cannot allocate
sufficient energy to reproduction (e.g. Hakkarainen
et al. 2007; Gallizzi et al. 2008). Additionally, pater-
nal stress can affect offspring phenotype by altering
sperm phenotype and affecting post-zygotic devel-
opment and performance (Crean et al. 2012, 2013;
Rando, 2012; Bromfield et al. 2014; Zajitschek
et al. 2014). Several proximate mechanisms have
been put forward to explain parental effects due to
infections, most involving hormonal or other
physiological pathways, as well as epigenetic phe-
nomena, and ultimately leading to offspring that
are pre-adapted to the parasites they are most
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likely to encounter based on their parent’s experi-
ence (Sorci and Clobert, 1995).
Are there consequences of having ‘cancerous’

parents? Given that most if not all individuals
among metazoan species accumulate precancerous
lesions and in situ tumours in many organs as they
age (Folkman and Kalluri, 2004), this question is
relevant to virtually all multicellular organisms.
Few cancers are directly transmissible, so the risk
of offspring contagion is often not applicable.
However, because of the health consequences asso-
ciated with tumourigenesis, parents with more or
less advanced malignancies are likely to be affected
in their ability to provide adequate resources/paren-
tal care to their offspring. To our knowledge this
question has never been empirically addressed. As
for parasites, deeper trans-generational effects prob-
ably exist, as suggested by several studies indicating
that epigenetic modifications that influence cancer
risk can be inherited through the germline across
multiple generations (reviewed in Fleming et al.
2008). Similar to infections, cancer risk could be cor-
related within families across generations. This
should presumably be the case in species with low
dispersal, living in areas (naturally or artificially)
contaminated by mutagenic substances, because
both parents and offspring experience the same eco-
logical contexts. Similarly, the same should apply to
cancer caused by inherited oncogenic vulnerabilities.
At the moment there is little evidence available on
the consequences of having parents harbouring
tumours and/or oncogenic mutations on offspring
phenotype, in terms of costs and adaptive (non-
genetic) transgenerational effects.
Although parent-to-offspring transmission of

cancer cells may be uncommon, parent-to-offspring
transmission of infections that induce cancer appear
to be moderately common (Ewald and Swain
Ewald, 2015). For example, in humans, T-lympho-
tropic virus type 1 (Coovadia et al. 2007) and poten-
tially hepatitis B virus are transmissible to offspring in
milk (but see Chen et al. 2013) and cause cancer in a
substantial proportion of those offspring (Ewald and
Swain Ewald, 2015). In captive wildlife, vertical
transmission of simian T-lymphotropic viruses in
apes (Parrish et al. 2004; d’Offay et al. 2007), feline
immunodeficiency virus in cats (O’Neil et al. 1995)
and mouse mammary tumour virus in mice
(Bentvelzen et al. 1970) is known, but their occur-
rence in the wild requires further study.

Evolutionary change in the host population

Whenever there is a genetic basis to LH traits, or
trade-offs between them, evolutionary change in
the host population can occur in response to ‘infec-
tion’ by cancer just as it would with parasites. For
instance, selection may favour early sexual maturity
when the risk of future infection and mortality is

high. Indeed, snails from localities with a high
prevalence of castrating trematodes become sexually
mature earlier than conspecifics living in areas of low
prevalence (Lafferty, 1993; Fredensborg and Poulin,
2006). One of the best examples of altered LH strat-
egies in response to exposure to cancer involves the
Tasmanian devils (Sarcophilus harrisii) and their
transmissible cancer, the devil facial tumour
disease (DFTD). Following the appearance of
DFTD, devils have responded to the cancer-
induced mortality by rapidly transitioning from a
late maturing iteroparous (multiple reproductive
cycles) to an early maturing semelparous (single
breeding) reproductive strategy (Jones et al. 2008).

Concluding remarks

Is it justifiable to ignore LH traits when studying
oncogenic phenomena? In the light of this discus-
sion, we suggest that the answer is clearly no.
Cancer can directly affect LH traits by imposing
costs and/or indirectly by triggering plastic adjust-
ments and evolutionary responses, just as parasites
are well known to do. Reciprocally, these effects
can potentially influence cancer risks, through the
evolution of differential cancer vulnerabilities in
populations (e.g. Kokko and Hochberg, 2015). For
instance, BRCA1 and BRCA2 mutations are inher-
ited and predispose women to breast and ovarian
cancer, but even though carriers of these mutations
have a reduced survival, they also have enhanced fer-
tility (Easton et al. 1995; Smith et al. 2012). This
result may indicate antagonistic pleiotropy (i.e.
when one gene controls more than one trait, at least
one of these traits is beneficial to the organism’s
fitness and at least one is detrimental to fitness).
However, since the adaptive response by the host
also favours the transmission of BRCA1 and BRCA2
to the next generations, this suggests that the existence
of LH trait adjustments could influence the persist-
ence of oncogenic mutations in certain populations.
In addition, such adjustments would be, in our
opinion, a potentially more parsimonious alternative
to the antagonistic pleiotropy hypothesis classically
invoked to explain why oncogenic mutations
persist at a higher frequency than expected by the mu-
tation-selection balance (e.g. Bodmer, 2006; Risch
et al. 2006).
To understand the evolution of LH traits in a

cancer context, one must consider the complete eco-
logical context in which individuals developing
tumours live. Unfortunately, there is only limited
data to date, supporting the hypotheses we have out-
lined above (Table 1). Clearlymore data and research,
including on the assumptions of cancers potentially
affecting fitness related traits, are needed to draw a
more substantiated parallel between cancer and infec-
tious diseases. Because one single method or model
cannot thoroughly integrate all the complexity of
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the processes we have discussed, researchers inter-
ested in these adaptive responses must engage in
greater exchanges and collaborations involving scien-
tists from different disciplines. Finally, we strongly
encourage researchers to systematically explore the
myriad of symptoms displayed by cancerous patients
in order to discover those that could be LH trait
responses, vs those that illustrate pathological costs
without adaptive value.
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