Cyclic nitric oxide release by human granulocytes, and invertebrate ganglia and immunocytes: nano-technological enhancement of amperometric nitric oxide determination

George B. Stefano¹, Michel Salzet², Harold I. Magazine¹

¹ Neuroscience Research Institute, State University of New York at Old Westbury, Old Westbury, NY, USA
² Laboratoire Neuroimmunologie des Annélides, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France

Source of support: This work was supported by the following grants: NIDA 09010 and NIH Fogarty INT 00045 (GBS).

Summary

Background: Various tissues from vertebrates and invertebrates respond to external signal molecules by rapid release of nitric oxide (NO) mediated by constitutive nitric oxide synthase.

Material/Methods: Invertebrate immunocytes were collected from maintained stock and human granulocytes were isolated from leukocyte-enriched blood obtained from the Long Island Blood Services. The invertebrate ganglionic tissue was either extracted or exposed for ex vivo and in vivo evaluation. Nitric oxide release was measured using a newly developed NO-selective nanoprobe, exhibiting enhanced sensitivity.

Results: Evaluation of NO release from the pedal ganglia of the marine bivalve, Mytilus edulis, demonstrated in vitro release of NO that fluctuated from 969 to 1003 pM, with a mean change in NO of 35 pM/cycle and a mean cycle time of approximately 4 minutes. Basal release of NO/cycle from the ganglia in vivo was increased significantly to approximately 65 pM (P<0.05) with an increase in cycle time to approximately 7 minutes. Exposure of the ganglia to morphine in vivo resulted in a significant increase in NO release and a lack of NO pulsations. The fluctuation in NO release from immunocytes of Mytilus edulis was approximately 27 pM per cycle with a cycle time of 4 minutes whereas human granulocytes release fluctuated approximately 23 pM with a cycle time of 6 minutes.

Conclusion: These data demonstrate that basal release of NO from various tissues is released in a cyclic manner and the cycle time and magnitude is subject to regulation by external stimuli.

key words: nitric oxide • granulocytes • immunocytes • cyclic

File size: 189 kB
Word count: 2157
Tables: 1
Figures: 6
References: 31

Author's address: Dr. George B. Stefano, Neuroscience Research Institute, State University of New York at Old Westbury, Old Westbury, NY 11568-0210, USA, email: gstefano@sunynri.org
BACKGROUND

The release of NO mediated by cNOS activation has been reported to stimulate as well as inhibit tissue responsiveness to external stimulation [1]. We have demonstrated previously that NO can inhibit cell activation and subsequent responsiveness to stimulatory signal molecules [1]. Alternatively, a period of hyper-responsiveness to stimulatory signal molecules was observed following the period of inhibition [2]. We surmise that the cyclic release of NO is autoregulatory in nature and may allow enhancement and inhibition of cellular responsiveness [3].

The current report suggests that basal release of NO in the absence of stimulatory molecules may also provide dynamic autoregulation of activation at the cellular level. The enhanced sensitivity of a stabilized nanoamperometric probe allowed for the evaluation of basal cNOS production previously estimated to be approximately 1 nM. Increased sensitivity of the stabilized probe confirms the previous estimates for basal NO release and demonstrates, for the first time, that human granulocytes and invertebrate neural and immune tissue produce basal levels of NO that is cyclic in nature with pulses of NO release observed with a repetition cycle of approximately 4 to 7 minutes. Our data implies that modulation in the magnitude or cycle time of basal NO release may provide dynamic regulation of cellular responsiveness to signal molecules.

MATERIAL AND METHODS

Invertebrate and Human tissue

Mytilus edulis, a marine bivalve mollusk, was harvested from the Long Island Sound, Montauk, New York and maintained in the laboratory for three weeks prior to their use in these studies [4]. Invertebrate immunocytes were collected and processed for use exactly as described previously [5,6]. Immunocytes were aspirated by insertion of a needle through the posterior adductor muscle of Mytilus edulis and suspended in incubation medium, 50% by volume Instant Ocean and cell-free hemolymph supplemented with streptomycin (50 mg/100 ml), penicillin (0.3 mg/ml) and gentamycin (50 mg/ml) to minimize bacterial growth during the study [7] until use in experiments. For ex vivo evaluation of pedal ganglia, tissue was isolated and removed exactly as described [7] and placed in incubation media. For m vivo evaluation of pedal ganglia, the pedal ganglion was exposed at the base of the animal’s foot by cutting the connective tissue just above its superior surface and bathed with incubation media just prior to use in experiments. Human granulocytes were isolated from leucocyte-enriched blood obtained from the Long Island Blood Services (Melville, New York). Granulocytes were isolated following dextran sedimentation and Ficoll-Hypaque density gradient centrifugation (1.077–1.080 g/ml) as described in detail [8–10]. Cells were stained with Wright’s stain to assess purity by microscopic examination which was ranged from 94 to 97% with a viability of > 95% as assessed by trypan blue exclusion.

NO Determination

Invertebrate Pedal Ganglia

Release of NO from pedal ganglia of Mytilus edulis ex vivo was evaluated using a NO-selective nanoprobe (ISONOPNM) [11] and NO meter (ISONO-MARK II), manufactured by World Precision Instruments (Sarasota, FL). The system was calibrated daily as described [12] using the NO donor, SNAP, in presence of Cu(I), to liberate known quantities of NO. The probe was allowed to polarize for 30 min in incubation media prior to transfer to an Eppendorff tube containing a single ganglion in 1 ml incubation media. The nanoprobe tip (100 nm diameter) was positioned 10 µm above the tissue surface using a micromanipulator (Zeiss-Eppendorff) attached to the stage of an inverted microscope (Nikon Diaphot). Constitutive NO release was then evaluated for an additional 15 minutes. Data acquisition was accomplished using the computer interface DUO-18 software (World Precision Instruments, Sarasota, FL) and experimental values were transferred to Sigma-Plot and Sigma-Stat (Jandel, CA) for graphic representation and evaluation. For determination of the specificity of the NO response, experiments as described above were repeated in the presence of 100 mM N-omega-nitro-L-arginine methyl ester (L-NAME), a selective NOS inhibitor. Evaluation of NO release from pedal ganglia in vivo was performed exactly as described above for ganglia ex vivo except that ganglia were not removed from the animal. NO measurements were performed using ganglia surgically exposed and bathed in incubation media prior to positioning of the nanoprobe 10 µm above the ganglia.

Invertebrate Immunocytes

Immunocytes from Mytilus edulis were suspended in incubation medium to a final concentration of 10⁶ immunocytes per ml incubation media. 1 ml of this suspension was added to an Eppendorff tube and gently centrifuged for 10 min at 800 xg to create a cell-free zone that allowed placement of the nanoprobe approximately 10 µm above the soft cell pellet. Detection of NO release from the immunocytes was then performed exactly as described above for pedal ganglia.

Human Granulocytes

Detection of NO release from the human granulocytes was performed exactly as described above for invertebrate immunocytes except that the cells were resuspended in phenol-free RPMI to a final concentration of 10⁶ cells per 1 ml.

Specificity of NO release

To determine the specificity of the NO production and exclude the impact of experimental drift or noise, experiments in pedal ganglia and immunocytes of Mytilus edulis and human granulocytes were repeated in the presence of the 100 mM omega-nitro-L-arginine methyl ester (L-NAME), a potent NOS inhibitor.
RESULTS

NO release from invertebrate ganglia

Excised pedal ganglia released NO at low levels in a cyclic manner which varied from 970 to 1002 pM (Figure 1). The fluctuation in NO per cycle ranged from 20 to 46 pM with a mean of 34±2 pM and cycle time of 4.1±0.2 minutes. Basal NO release from pedal ganglia evaluated in vivo ranged from 960 to 1025 pM (Figure 2). The fluctuation in NO release and mean cycle time in vivo were increased significantly to 65±2 pM and 6.9±0.4 min, respectively (P<0.001) compared to ganglia evaluated ex vivo (Table 1). Basal NO levels detected in ganglia ex vivo (Figure 1) or in vivo (Figure 2) in the presence of L-NAME were diminished to undetectable levels and fluctuations in NO release were abolished.

The effect of external stimuli on fluctuations in NO release and cycle time was evaluated using pedal ganglia in vivo in the absence or presence of morphine. Release of NO from untreated ganglia fluctuated from approximately 950 pM to 995 with a mean cycle time of 7 minutes (Figure 3). Treatment of the ganglia with exogenous morphine resulted in an increase in NO release that was markedly greater than that observed in unstimulated preparations. Approximately 15 min following morphine exposure NO release was reduced relative to basal release with ablation of the cyclic fluctuations in

Statistical analysis

All experiments, as described above, were repeated n=4 times using Mytilus edulis tissue (pedal ganglia and immunocytes) from different animals. Experiments using human granulocytes were repeated n=4 times from granulocytes extracted from different blood donors. Data shown is the mean ± SEM of NO release observed in the absence or presence of L-NAME. Data was subjected to paired ANOVA for evaluation of statistical significance where a p value less than 0.05 was considered to be statistically significant. In all experiments, data gatherers were blinded to the experimental conditions to avoid bias.

Table 1. Characteristics of basal NO release from invertebrate and human tissue.

<table>
<thead>
<tr>
<th>Tissue</th>
<th>NO release per cycle (pM)</th>
<th>P value</th>
<th>Cycle Time</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedal Ganglia ex vivo</td>
<td>34.0±5.2</td>
<td>–</td>
<td>4.1±0.2</td>
<td>–</td>
</tr>
<tr>
<td>Pedal Ganglia in vivo</td>
<td>65.1±1.5</td>
<td>0.001*</td>
<td>6.9±0.4</td>
<td>0.05*</td>
</tr>
<tr>
<td>Immunocytes</td>
<td>26.8±2.2</td>
<td>–</td>
<td>4.2±0.1</td>
<td>–</td>
</tr>
<tr>
<td>Granulocytes</td>
<td>23.1±3.3</td>
<td>NS**</td>
<td>6.4±0.2</td>
<td>0.05***</td>
</tr>
</tbody>
</table>

*Untreated invertebrate pedal ganglia ex vivo compared to in vivo; **NS, not significant; ***Untreated invertebrate immunocytes compared to human granulocytes.

Figure 1. Real-time nitric oxide release from excised pedal ganglia from M. edulis. Release of NO was determined using a nanomperometric probe. Basal release of NO fluctuated from a minimum of 968.6±2.7 pM to a maximum of 1002±7.7 pM. Basal fluctuations in NO release were abrogated in tissue pretreated L-NAME 100mM and cyclic release was abolished.

Figure 2. Real-time nitric oxide release from Mytilus edulis pedal ganglia in vivo. Basal release of NO fluctuated from a minimum of 960.1±0.1 pM to a maximum of 1025.3±1.7 pM. Basal fluctuations in NO release were abrogated in tissue pretreated L-NAME 100mM and cyclic release was abolished.

Figure 3. Modulation of nitric oxide release from Mytilus edulis pedal ganglia in vivo by morphine. Basal release of NO in untreated ganglia fluctuated from a minimum of 944.5±1.4 pM to a maximum of 997.8±1.8 pM. Exposure of the ganglia to morphine resulted in a marked increase in NO release with maximal fluctuation of approximately 107 pM over unstimulated levels. The increase in NO release was observed for 15 minutes followed by a 20 minute period of reduced NO release whereupon a release of NO comparable to untreated ganglia was observed.
NO release. A recovery in the basal-type release was observed approximately 40 minutes following the initial morphine exposure.

NO release from inflammatory tissue

Evaluation of basal NO release from invertebrate immunocytes was comparable to that obtained for the pedal ganglia except that it occurred with increased frequency; about once every 4.3±0.1 min (Figure 4). Evaluation of NO release from human granulocytes ranged from 953 to 976 pM (Figure 5). The fluctuation in NO release per cycle was 23.1±2.2 pM compared to 26.8±2.5 pM in invertebrate immunocytes. The cycle time was 6.4±0.2 minutes. Basal NO levels detected in invertebrate (Figure 4) or human inflammatory tissue (Figure 5) in the presence of L-NAME was diminished to undetectable levels and fluctuations in NO release were abolished.

DISCUSSION

General mechanism

Improved sensitivity and increased signal to noise ratio of the nano-amperometric NO probe allowed first time evaluation of basal NO release from invertebrate and human tissue. The current report demonstrates that basal release of NO from human and invertebrate inflammatory cells and invertebrate pedal ganglia was approximately 950 to 1100 pM, consistent with that estimated in our previous reports [8,13,14]. In the current report we demonstrate for the first time that invertebrate neural and invertebrate and human immune tissue release basal levels of NO in a pulsatile manner with a magnitude and cycle time that is subject to external regulation.

NO autoregulation

Recent data has emerged from the literature demonstrating that NO, either exogenously applied or produced as a result of cNOS stimulation, can attenuate the induction of iNOS in vascular smooth muscle, neutrophils, microglia, astrocytes and hepatocytes [15–21]. In this regard, we have also demonstrated that NO can diminish cNOS derived NO production [22] as well as iNOS derived NO release [23]. Furthermore, cNOS derived NO can inhibit iNOS derived NO induction by inhibiting iNOS expression in human endothelial cells [23,24]. Thus, NO can autoregulate its own production [3].

NO effects on cell activation

Neural vascular endothelial and inflammatory cells are constitutively activated and can respond to microenvironmental changes by changing from a low level to a increased level of activation [1]. We hypothesize that basal NO production may provide a critical pathway to dampen microenvironmental 'noise' that would otherwise non-specifically and inappropriately lead to increased activation [1]. NO modulates the threshold required for cell activation [1] and the magnitude of the subsequent response [2]. A diminished level of NO would represent a disinhibition process that could overwhelm inhibitory signals and allow increased influence of excitatory signal required for cellular activation [1]. In this regard, we have demonstrated that exposure of cells to lipopolysaccaride (LPS) triggers an excitatory signal that reduces the constitutive production of NO and subsequent activation of these cells occurs [23,25]. However, 8 to 24 hours following LPS administration, NO production mediated by iNOS is observed and cell activation is maintained.

We have reported previously that cNOS coupled NO release may modulate cell activation and the observations in the current report suggests that basal NO production may also participate in the regulation of the activation state of a cell. The demonstration that NO release from the pedal ganglia of Mytilus edulis could be modulated by signal molecules, such as morphine, demonstrates that basal production of NO is subject to external regulation (Table 1). Morphine stimulation of human monocytes, granulocytes and vascular endothelial cells as well as invertebrate immunocytes has been previously demonstrated to trigger a cNOS-mediated...
potential excitatory processes via hyperpolarization of the post synaptic membranes [1] and minimize microenvironmental free radical levels [5]. During the decline phase where decreasing levels of NO are observed, NO mediated inhibition would be reduced allowing for up regulation of cellular excitatory processes (Figure 5). Indeed, this decline phase would represent a critical time period where critical signal molecule activity could exert increased effects on physiological processes, i.e., immune activation to meet a proinflammatory situation. Cyclic elevation and decline in NO release was also observed in human cells as well, where it appears to be involved with hypothalamic neurosecretion [31]. The release of NO in a cyclic manner appears to have been conserved during evolution since they occur in evolutionarily diverse animals.

Conclusions

In summary, NO release in *Mytilus edulis* ganglionic tissues and immunocytes and human granulocytes occurs under basal conditions and is cyclical in nature. The data in the current report, taken together with our previous observations with cNOS-coupled NO production, suggest that changes in basal NO production by external signal molecules may modulate cellular activity. In this regard, the cyclical nature of NO release may represent a dynamic autoregulatory process that results in discreet control of the cellular responses, resulting in varying degrees of alertness and a graded response to microenvironmental changes.

REFERENCES:

17. Park SK, Lin HL, Murphy S: Nitric oxide regulates nitric oxide synthase-2 gene expression by inhibiting NF-kappa B binding to DNA. Biochem J, 1997; 322:609-15
Index Copernicus
Global Scientific Information Systems for Scientists by Scientists

Index Copernicus integrates

IC Scientists
Effective search tool for collaborators worldwide. Provides easy global networking for scientists. C.V.’s and dossiers on selected scientists available. Increase your professional visibility.

IC Journal Master List
Scientific literature database, including abstracts, full text, and journal ranking. Instructions for authors available from selected journals.

IC Virtual Research Groups [VRG]
Web-based complete research environment which enables researchers to work on one project from distant locations. VRG provides:
- customizable and individually self-tailored electronic research protocols and data capture tools,
- statistical analysis and report creation tools,
- profiled information on literature, publications, grants and patents related to the research project,
- administration tools.

IC Conferences
Effective search tool for worldwide medical conferences and local meetings.

IC Patents
Provides information on patent registration process, patent offices and other legal issues. Provides links to companies that may want to license or purchase a patent.

IC Grant Awareness
Need grant assistance? Step-by-step information on how to apply for a grant. Provides a list of grant institutions and their requirements.

IC Lab & Clinical Trial Register
Provides list of on-going laboratory or clinical trials, including research summaries and calls for co-investigators.

www.IndexCopernicus.com

EVALUATION & BENCHMARKING
PROFILED INFORMATION
NETWORKING & COOPERATION
VIRTUAL RESEARCH GROUPS
GRANTS
PATENTS
CLINICAL TRIALS
JOBS

STRATEGIC & FINANCIAL DECISIONS